Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

catena-Poly[fac-trichloromethyl-tin(IV)- μ-[meso-1,2-bis(phenyl-sulfinyl)ethane- $\left.\left.O: O^{\prime}\right]\right]$

Maria Teresa do Prado Gambardella, ${ }^{\text {a* }}$
Regina Helena Porto Francisco, ${ }^{\text {a }}$ Ana Maria G. Dias Rodrigues ${ }^{\text {a }}$ and Gerimário Freitas de Sousa ${ }^{\text {b }}$

${ }^{\text {a }}$ Instituto de Química de São Carlos, USP, Caixa Postal 780, 13560.970 São Carlos SP, Brazil, and ${ }^{\text {b }}$ Departamento de Química, UnB, Caixa Postal 04478, 70910-910 Brasília DF, Brazil
Correspondence e-mail: teca@iqsc.sc.usp.br

Received 23 March 2000
Accepted 24 March 2000

Data validation number: IUC0000091
In the title compound, $\left[\mathrm{SnCl}_{3}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SOCH}_{2}\right)_{2}\right]_{n}$, the octahedral $\mathrm{Sn}^{\mathrm{IV}}$ centres are bridged by meso-1,2-bis(phenylsulfinyl)ethane ligands forming infinite chains along the [100] direction.

Comment

This study is part of structural studies on adducts of halideorganotin compounds with sulfoxide derivatives.

The meso-1,2-bis(phenylsulfinyl)ethane ligand, meso$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SOCH}_{2}\right)_{2}$, crystallizes with a centre of symmetry at the middle of the ethane $\mathrm{C}-\mathrm{C}$ bond (Cattalini et al., 1979). The occurrence of this centre of symmetry was also observed here, (I), and in the structures of $\left[\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left\{\right.\right.$ meso- $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}\right.$ $\left.\left.\left.\mathrm{CH}_{2}\right)_{2}\right\}\right]$ (Carvalho et al., 1996a), $\left[\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left\{\right.\right.$ meso- $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~S}\right.$ $\left.\left.\left.\mathrm{OCH}_{2}\right)_{2}\right\}\right]$ (Carvalho et al., 1996b) and cis-[PtCl_{2} $\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}\left\{\text { meso- }\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SOCH}_{2}\right)_{2}\right\}\right]_{2} \quad \text { (Francisco et al., 1995), }}^{\text {, }}\right.$ where the $\mathrm{Sn}^{\mathrm{IV}}$ and $\mathrm{Pt}^{\mathrm{II}}$ cations have octahedral and squareplanar geometries, respectively.

(I)

In the title structure, the $\mathrm{Sn}^{\mathrm{IV}}$ atom is hexacoordinate in a distorted octahedral geometry. The Cl atoms trans to the O atoms form $\mathrm{Sn}-\mathrm{Cl}$ bonds $[\mathrm{Sn}-\mathrm{Cl} 22.4585$ (8) and $\mathrm{Sn}-\mathrm{Cl} 3$ 2.4401 (8) Å] longer than the Cl atom trans to the C atom
[$\mathrm{Sn}-\mathrm{Cl} 12.3774$ (9) Å]. Completing the coordination, there are two equivalent sulfoxide groups in a cis orientation [both with an $\mathrm{Sn}-\mathrm{O}$ distance of 2.227 (2) \AA] and a methyl group at a $\mathrm{Sn}-\mathrm{C}$ distance of 2.114 (3) \AA. Each sulfoxide is bound to two Sn atoms in an infinite chain along the [100] direction.

Similar cis- $\mathrm{O}_{2} \mathrm{Sn}$ geometries have been observed previously in the structures of $\left[\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left\{\right.\right.$ meso- $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SOCH}_{2}\right)_{2}\right\}\right]$ and $\left[\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left\{\right.\right.$ meso- $\left.\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SOCH}_{2}\right)_{2}\right\}\right]$. The average $\mathrm{Sn}-\mathrm{O}$ bond distances $(2.359 \AA)$ in these structures compared with $\mathrm{Sn}-\mathrm{O}[2.227$ (2) \AA] in the title complex, follow the expected trends in the lower Lewis acidity of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2}$ with respect to $\mathrm{CH}_{3} \mathrm{SnCl}_{3}$.

The crystal structures of the related adducts mer$\left[\mathrm{SnCl}_{3}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NSOC}_{3} \mathrm{H}_{7}\right)\right]$ (Sousa et al., 1992), fac$\left[\mathrm{SnCl}_{3}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2}\right\}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$ (Hall \& Tiekink, 1996) and facand mer- $\left[\mathrm{SnCl}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$ (Reuter \& Puff, 1992) have been determined. All these examples, and also the results observed for the title compound, agree with the proposal of Reuter \& Puff (1992) that the predominant formation of only a special stereoisomer, which is often observed in octahedral 1:1 and/or 1:2 adducts of monoorganotin trihalides, is caused by reaction conditions more than steric and/or electronic effects of the several complex ligands.

Experimental

Suitable single crystals of (I) were obtained by the 1:1 reaction of meso- $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SOCH}_{2}\right)_{2}$ with $\mathrm{CH}_{3} \mathrm{SnCl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Crystal data

$\left[\mathrm{SnCl}_{3}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OS}\right)_{2}\right]$
$M_{r}=518.45$
Monoclinic, $P 2_{1} / c$
$a=15.942$ (1) \AA
$b=6.3738$ (4) \AA
$c=20.895(2) \AA$
$\beta=111.129$ (7) ${ }^{\circ}$
$V=1980.4(3) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius Turbo-CAD-4 diffractometer κ-geometry diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.670, T_{\text {max }}=0.762$
5933 measured reflections
5748 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.031$
$w R\left(F^{2}\right)=0.087$
$S=1.054$
5748 reflections
210 parameters
H -atom parameters constrained
$D_{x}=1.739 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=11.34-18.11^{\circ}$
$\mu=1.91 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, white
$0.30 \times 0.15 \times 0.15 \mathrm{~mm}$

4177 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=29.99^{\circ}$
$h=-22 \rightarrow 0$
$k=0 \rightarrow 8$
$l=-27 \rightarrow 29$
3 standard reflections frequency: 120 min intensity decay: 2%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0409 P)^{2}\right. \\
& +0.0144 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\text {max }}=0.65 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e}^{\AA^{-3}} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0017 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Sn}-\mathrm{C}$	$2.114(3)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.779(3)$
$\mathrm{Sn}-\mathrm{O} 2$	$2.227(2)$	$\mathrm{S} 1-\mathrm{C} 13$	$1.803(3)$
$\mathrm{Sn}-\mathrm{O} 1$	$2.227(2)$	$\mathrm{S} 2-\mathrm{O} 2$	$1.532(2)$
$\mathrm{Sn}-\mathrm{Cl} 1$	$2.3774(9)$	$\mathrm{S} 2-\mathrm{C} 7$	$1.782(3)$
$\mathrm{Sn}-\mathrm{Cl} 3$	$2.4401(8)$	$\mathrm{S} 2-\mathrm{C} 14$	$1.804(3)$
$\mathrm{Sn}-\mathrm{Cl} 2$	$2.4585(8)$	$\mathrm{C} 13-\mathrm{C} 13^{\mathrm{i}}$	$1.511(6)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.535(2)$	$\mathrm{C} 14-\mathrm{C} 14^{\mathrm{ii}}$	$1.511(6)$
$\mathrm{C}-\mathrm{Sn}-\mathrm{O} 2$	$86.89(11)$	$\mathrm{O} 1-\mathrm{Sn}-\mathrm{Cl} 2$	$87.42(6)$
$\mathrm{C}-\mathrm{Sn}-\mathrm{O} 1$	$86.56(11)$	$\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{Cl} 2$	$90.31(3)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{O} 1$	$85.47(8)$	$\mathrm{Cl} 3-\mathrm{Sn}-\mathrm{Cl} 2$	$96.75(3)$
$\mathrm{C}-\mathrm{Sn}-\mathrm{Cl} 1$	$167.70(10)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$104.02(13)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{Cl} 1$	$85.14(6)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 13$	$103.59(12)$
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{Cl} 1$	$83.49(6)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 13$	$100.96(14)$
$\mathrm{C}-\mathrm{Sn}-\mathrm{Cl} 3$	$97.55(10)$	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 7$	$103.54(14)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{Cl} 3$	$90.04(6)$	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 14$	$104.26(13)$
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{Cl} 3$	$173.76(6)$	$\mathrm{C} 7-\mathrm{S} 2-\mathrm{C} 14$	$99.03(14)$
$\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{Cl} 3$	$91.82(4)$	$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Sn}$	$121.86(12)$
$\mathrm{C}-\mathrm{Sn}-\mathrm{Cl} 2$	$96.46(10)$	$\mathrm{S} 2-\mathrm{O} 2-\mathrm{Sn}$	$126.83(13)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{Cl} 2$	$171.95(6)$		
Sy			

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$.
H atoms were positioned geometrically and a riding model was used during the refinement process, with $U_{\text {iso }}$ amounting to 1.5 (for methyl H atoms) or 1.2 (for the remaining) of the value of the $U_{\text {eq }}$ of the atom to which they are attached. The $\mathrm{C}-\mathrm{H}$ distances range is 0.93-0.97 A.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \&

Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

The authors thank the Brazilian agences CAPES, CNPq, FINEP and FAPESP for financial support.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Carvalho, C. C., Francisco, R. H. P., Gambardella, M. T. do P., de Sousa, G. F. \& Filgueiras, A. C. L. (1996a). Acta Cryst. C52, 1629-1631.
Carvalho, C. C., Francisco, R. H. P., Gambardella, M. T. do P., de Sousa, G. F. \& Filgueiras, A. C. L. (1996b). Acta Cryst. C52, 1627-1629.
Cattalini, L., Michelon, G. \& Pelizzi, G. (1979). J. Chem. Soc. Dalton Trans. pp. 96-101.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1998). WinGX. University of Glasgow, Scotland.
Francisco, R. H. P., Gambardella, M. T. dp P., Rodrigues, A. M. G. D., de Sousa, G. F. \& Filgueiras, C. A. L. (1995). Acta Cryst. C51, 604-606.

Hall, V. J. \& Tiekink, E. R. T. (1996). Acta Cryst. C52, 2141-2143.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359. Reuter, H. \& Puff, H. (1992). J. Organomet. Chem. 424, 23-31.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sousa, G. F. de, Filgueiras, C. A. L., Darensbourg, M. Y. \& Reibenspies, J. H. (1992). Inorg. Chem. 31, 3044-3049.

